THE 2nd MALAYSIA NATIONAL SEWERAGE CONFERENCE

APPLICATION OF GREEN TECHNOLOGY IN EXISTING SEWAGE TREATMENT PLANTS: CASE STUDIES OF FIVE STPs IN KL AND SELANGOR.

12 AUGUST 2015

JABATAN PERKHIDMATAN PEMBETUNGAN

SCOPE OF STUDIES

- INSPECTION OF STPs
- IDENTIFY SUITABLE GREEN TECHNOLOGIES
- PROPOSE GREEN TECHNOLOGY APPLICATIONS
- DESIGN OF PILOT PROJECT
- TENDER DOCUMENTATION FOR PILOT PROJECT

STUDY LOCATIONS

STP BANDAR TUN RAZAK (KLR 129)

- PROCESS SYSTEM SBR
- DESIGN CAPACITY 100,000 PE
- CURRENT OPERATION 71,200 PE

STP SUNGAI BESI (KLR 340)

- PROCESS SYSTEM ORBAL
- DESIGN CAPACITY 82,500 PE
- CURRENT OPERATION 58,512 PE
- SLUDGE TREATMENT FACILITIES INCLUDE ANAEROBIC DIGESTER

STUDY LOCATIONS

STP PUCHONG (KLR 336)

- PROCESS SYSTEM ADVANCED CAS
- DESIGN CAPACITY 150,000 PE
- CURRENT OPERATION 161,341 PE

STP DAMANSARA (KLR 354)

- PROCESS SYSTEM OXIDATION DITCH
- DESIGN CAPACITY 100,000 PE
- CURRENT OPERATION 70,701 PE

STP CYBERJAYA A (GSG 109)

- PROCESS SYSTEM EXTENDED AERATION
- DESIGN CAPACITY 100,000 PE
- CURRENT OPERATION 30,000 PE

STUDY PROCESS FLOW CHART

Summary of Finding on Plants Operation

Specific Process at STP	Puchong STP Conventional Sludge (ACAS) Advanced Activated		Cyberjaya STP A Extended Aeration (EA)		Bandar Tun Razak STP Sequencing Batch Reactor (SBR)		Sung Modified Oxi	ngai Besi STP Dxidation Ditch (MOD)		Damansara STP Advanced Oxidation Ditch (AOD)		itch			
Stability	of Influent Cha	racteristics													
	21,467 133		9,211 263),211 263		17,920 251		8,787 150			11,872 168			
BOD [mg/L]	106	Consist	ent	50-74	Consistent		98-162	Consisten	t	40-227	Vary		35-39	Consiste	ent
BOD/COD	0.37	Sewag	je	0.30-0.47	Sewage		0.32-0.52	Sewage		0.11-0.53	Mixed sewage industrial wastew	+ ater	0.05-0.10	Mixed sewa industri wastewa	age + al ater
	114	Vary		63-170	Vary		52-120	Consisten	t	108-680	Vary		74-292	Vary	
Aeration Basin Environment															
	Design value	Obtaine value	ed e	Design value	Obtained value		Design value	Obtained Value		Design value	Obtained Value		Design value	Obtaine value	ed
F/M [kgBOD/kgMLVSS.day]	0.25-0.50	0.075	V	0.05-0.15	0.22	×	0.05-0.30	0.12	V	0.05-0.15	0.052	V	0.05-0.10	0.017	\checkmark
	>1.0	0.79- 5.484	V	>1.0	3.50-4.78	V	>1.0	0.72-0.80	V	>1.0	1.83-1.86	\checkmark	>1.0	0.20-1.98	\checkmark
	1500-3000	2108- 4333 (3574)	V	2500-5000	364-472 (459)	×	3000-6000	2190-3650 (2888)	V	2500-5000	3000	V	2500-5000	1770- 2760 (2440)	V
	5-10	9.71	V	15-25	19.29	V	10-30	33.93	V	20-30	5.27	×	20-30	34.56	V
	5-14	11.87	V	20-35	22.19	V	15-40	20.42	V	15-35	13.66	V	20-35	31.54	V
	80-200	321-558	×	80-200	208-373	×	80-200	182-212	V	80-200	345-962	×	80-200	128-358	×
	20			No generation		6.07		**8.18			6.55				
		0.932				0.339			0.931			0.551			

** Note: *estimated based on flow and F/M ratio of Puchong STP

FINDINGS ON EFFLUENT QUALITY

Average concentration of various parameters in the influent and effluent of the STPs

		Bandar Tun Razak		Sg Besi		Damansara		Puchong		Cyberjaya	
Parameters	Unit	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
Biochemical Oxygen											
Demand @ 20 ⁰ C, 5 days	mg/l	108	18	71	22.5	37	4.5	53	8	75.5	11.5
Chemical Oxygen											
Demand	mg/l	259	23.5	642	90	558	29.5	285	33	219	26.5
Total Suspended Solids	mg/l	82	25	394	27	183	10	3550	106	170	22
Oil & Grease	mg/l	12	2	64	1	46	4.5	10.5	2	3.5	1
Ammoniacal Nitrogen											
(NH ₃ -N)	mg/l	27	8.4	137	11.2	31.43	0.98	32.3	8.96	21.995	18.27
Total Phosphorus	mg/l	12.03	2.215	17.775	11.625	10.77	2.37	7.745	1.035	4.86	1.265

Source: UiTM - A&A Laboratory, 2013

FINDINGS ON EFFLUENT QUALITY

Removal efficiency of various WQ parameters by respective STPs

STPs	BOD	COD	TSS	O&G	NH ₃ -N	PO ₄
BTR	83%	91%	70%	83%	69%	82%
Sg Besi	68%	86%	93%	98%	92%	35%
Damansara	88%	95%	95%	90%	97%	78%
Puchong	85%	88%	97%	81%	72%	87%
Cyberjaya	85%	88%	87%	71%	17%	74%
Average	82%	90%	88%	85%	69%	71%

SUMMARY OF ENERGY COST

Percentage energy consumption by various components of the STPs

	% of Average Daily Energy Consumption							
STP Component	BTR	Sg Besi	Damansara	Puchong	Cyberjaya			
Inlet Works	6.60	11.25		20.99	0.10			
Grit Chamber	0.40	0.76	0.29	0.75	0.36			
Aeration	70.92	75.45	73.46	46.41	87.55			
Sludge Treatment	20.07		20.56	26.09				
Admin Building	2.02	12.54	5.70	5.76	11.99			
Overall	100.00	100.00	100.00	100.00	100.00			

SUMMARY OF ENERGY COST

Average energy cost of	f various components	of the STPs	(RM/m^3)
			(

	Energy cost of various components (RM/m ³)								
	BTR	Sg Besi	Damansara	Puchong	Cyberjaya				
Inlet Works	0.0132	0.0166		0.0326	0.0002				
Grit Chamber	0.0007	0.0011	0.0004	0.0012	0.0006				
Aeration	0.1416	0.1115	0.0986	0.0722	0.1461				
Sludge Treatment	0.0433		0.0276	0.0406					
Admin Building	0.0044	0.0185	0.0077	0.0090	0.0200				
Overall	0.2032	0.1478	0.1342	0.1556	0.1669				

GUIDING PRINCIPLES IN ADOPTING GREEN TECHNOLOGY

- 1 **Process intensification & optimisation**, via:
- Ensuring high MLSS concentrations without affecting effluent clarity
- Generating denser sludge for easier sludge management
- Generate biogas from sludge, saving on offsite disposal costs.
- Ensuring more reliable and higher nutrient removal for both N and P to meet the required limits
- Process control to ensure stability and minimised chemical requirement, if any
- Optimised equipment usage to ensure longer life and lower energy requirement
- Operator friendly SOP to ensure optimised operation and monitoring for continuous improvement.

GUIDING PRINCIPLES IN ADOPTING GREEN TECHNOLOGY

- 2 Energy savings, via:
- Optimisation of aeration and pumping,
- Lowering of aeration requirements
- Substitution of equipment with lower energy units
- Power generation from biogas (sludge)
- Solar power generation
- Microturbines' generation

GUIDING PRINCIPLES IN ADOPTING GREEN TECHNOLOGY

- 3 <u>Resource recovery</u>, via:
 - Energy recovery from sludge
 - Effluent polishing for reuse using green technology
 - Biofertiliser production using green technology from final sludge
- 4 Emission minimisation
 - Emission of effluent meeting desired standard with respect to organics and nutrients N and P
 - Minimisation of aerosols
 - Minimisation of odour if any

PATHWAYS OF ORGANIC DESTRUCTION

Conventional STP:	Organics \rightarrow CO ₂ + sludge
Green STP:	Organics \rightarrow Biogas \rightarrow
	Energy + CO ₂ + sludges \rightarrow
	Biofertiliser

Concentration, mg/L

Variation of biomass yield with food availability

NOTE: Biomass yield is fastest at the log growth phase, where the content of volatiles of biomass is at highest concentration

BRIEF CONFIGURATION OF STP WITH BIOGAS, FERTILISER AND WATER RECOVERY FACILITIES

Units and water recovery

EVALUATION OF STP SITE FOR PILOT PLANT IMPLEMENTATION SCORE MATRIX

No.	Factor	Maximum Score	Cyberjaya	Puchong	Bandar Tun Razak	Sg Besi	Damansara
1	Space availability	35	20	30	5	8	5
2	Sewage and Sludge Characteristics	20	5	10	12	15	10
3	Disruptions to STP Operations	15	8	12	5	5	5
4	Impact on Surroundings	10	3	7	4	8	8
5	Ease of Construction	10	8	6	4	4	3
6	Expansion Potential	5	2	5	1	2	1
7	Potential for Use of Compost	5	3	3	2	2	4
	Total Score	100	49	73	33	44	36

PROPOSED PILOT PROJECT AT PUCHONG STP GREEN TECHNOLOGY APPLICATIONS

ELECTRICITY GENERATION FROM BIOGAS

84845 ب^{م, _} و بع، _ و COMPRESSER Capacity : 100Mm⁸ /m Molor Power : 72XW 1 C C Dest MINGAS HOLDER 1 INLENSES 0 题学。 1016000 ROAD 1 SURDER DECEMBER - N Total Marian 2 a/ au G 1 AND B THE REPORT AND BLOWER Type : Twin lobe Capelly : ~1921km² /hr Vorking Pressure : 220mbor Motor Power : 3.76V 2 Z Ē inter Little Soc R.O. PUNTH TO ENGR'S DED4. ----Ę. THE OTHER CENTRFUGE FEED PUMP covity per : 10 m²/hr : x50000 1.100 laterial of Constructio calleg . Cost Sloc Rubbe

GENERAL LAYOUT PLAN OF PROPOSED BIOGAS SYSTEM

COMPOST PRODUCTION FROM SLUDGE

ELEVATIONS OF PROPOSED COMPOST SYSTEM

COMPOST PRODUCTION FROM SLUDGE

GENERAL ARRANGEMENT

PROPOSED BLOWER REPLACEMENT

- Industry game changer in North America and Europe, using the centrifuge technology
- □ The energy efficient and silent alternative is based on the innovative design with proven magnetic bearing and high speed motor driven through a built in variable speed drive (VSD)

REPLACEMENT OF BLOWER WITH HST COMPRESSOR

PROPOSED PUMP REPLACEMENT

- **1. Premium Efficiency Motors**
 - Electric motor technology has improved dramatically in recent times and energy efficient motors are made available for most applications including the sewerage industry.
 - The IE 3 standard by IEC (International Electrotechnical Commission) premium efficiency is generally considered the highest rating.
 - IEC has established testing and labelling requirements for IE 3 or premium efficiency motors.

INSTALLATION OF VARIABLE SPEED DRIVES

Variable Speed Drives (VSD) provides continuous adjustment of motor speed by electronic controller to accommodate fluctuation in pumping demands.

Main advantages include:

•Reduce energy usage

•Soft starting – reduce mechanical and electrical stresses

SOLAR ENERGY SCHEMATIC

PROPOSED PV PANEL LOCATIONS

SOLAR PANEL INSTALLATION

THANK YOU

Prepared by:

ranhill consulting sdn bhd

Universiti Kebangsaan Malaysia

Uni10 Energy Sdn Bhd