

INTERNATIONAL CONFERENCE ON SHRIMP AQUACULTURE

PROBLEM SOLVING IN PRACTICAL SHRIMP FARMING

Nyan Taw

Hang Tuah University, Surabaya – INDONESIA October 28-29, 2010

Introduction

The success or failure in shrimp aquaculture is how successful one can prevent and control the problems before problematic situation begins.

The problems are due to mainly two factors – technology and human management. Technology begins with farm design and followed with appropriate operation system. Technology includes BAP and strict bio-security implementation to prevent and control viral outbreaks. Technology and bio-security information are available but man power management is the critical factor.

Present presentation provides on how to prevent and overcome in practical shrimp farming on common issues faced by shrimp farmers

Web of White Spot Disease Causation

Bamboo Shrimp Syndrome - recent

WSS

WSSV

IMNV

Table 1. Estimated economic losses since the emergence of certain diseases in penaeid shrimp aquaculture.

Virus	Year of emergence to 2001	Product loss (US dollars)		
White Spot Syndrome Virus-Asia	1992	\$4-6 billion		
White Spot Syndrome				
Virus-Americas	1999	>\$1 billion		
Taura Syndrome Virus	1991-1992	\$1-2 billion		
Yellow Head Virus	1991	\$0.1-0.5 billion		
Infectious Hypodermal		\$0.5-1.0 billion		
and Hematopoietic	1981	(includes		
Necrosis Virus		Gulf of California		
		fishery losses for 1989-1994		

Source: Lightner (2003, p. 85)

No data is better than wrong data

Recommended holding times for water samples

Variable	Time (hours)
рН	Analyze on site
Dissolved oxygen	Analyze on site
Total phosphorus	12
Total nitrogen	12
Nitrate nitrogen	12
5-day biochemical oxygen demand	12
Total ammonia nitrogen	24
Soluble reactive phosphorus	48
Chloride	72
Total suspended solids	72
Turbidity	72
Total alkalinity	72
Total hardness	72

Calibration of laboratory equipment is essential

Solubility of dissolved oxygen at saturation in waters of different temperatures and salinities.

		Salinity (ppt)								
Temp (°C)	0	5	10	20	30	35				
20 25	9.08 8.24	8.81 8.01	8.56 7 79	8.06 7 36	7.60 6.95	7.38				
30 25	7.54	7.33	7.14	6.75	6.39 5.01	6.22				
30	0.93	0.75	0.30	0.24	5.91	J'0 I				

Boyd C. 2001

Farming with appropriate technology is one way to success

Production Performance Characteristics

Table 2. Characteristics of various shrimp culture technologies used in Indonesia.

System	Objective	Achievements (Source)
L. vannamei		a discontration of
Monoculture	Containable and otion	9.0.10.0 mths 16.00 a cizer
High stocking density 100-150/m2/24-34 bp energy	Increase pond production	14.0-30.0 mbha, 14-18 g sizes
right account centrally new room readings	increased energy input (aerators	(Java, Bali, Lombok, CPB)
	or air diffusers)	
Monoculture partial harvest		
Stocking density 200-260/m²/28-30 hp energy	Increase pond productivity	25.0-35.0 mt/ha. 12-20 g sizes
:#:		(Lampung, CPB mais)
Bacterial floc (zero water exchange)	Increase biosecurity, productivity,	20-24 mt/ha, 16-20 g sizes
Stocking density 130-150/m²/30-32 hp energy	and efficiency	Record: 49.7 mt/ha after stocking at
A successful and D successful		280/m2 (CPB)
L. vannamerand P. monodon	High survival through pursery phase	Higher survival (CPB)
Two-step contaile	right der friter un ouger henden y prisse	ingrandarinar (or b)
Minimum water exchange	Increase biosecurity	Higher biosecurity (CPB)
Polyculture (L. vangame) and P. mogodon)	Utilize 100% of pond water column	7.5 vannamel 3.5 monodon mtha
Stocking density 70/m ² (40-50 vannamei,	and bottom area to increase pond	(Lampung, CPB trials)
20-30 monodon	productivity	

*Bio Floc

Nyan Taw, Shrimp Farming Indo GAA 2005

Program stocking with weather condition seem one way to avoid failures

WSSV dominant months (unstable weather – rain & cold), Indonesia, Thailand & Malaysia

	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	
Lampung																		
Java & Sumbaw a																		
Thailand																		
Malaysia																		

Making sure of following protocols and on time will reduce problems

CHECK LIST BIOSECURITY

Pond Address :

I. Ready for operation (Siap operasi), All Bio measures in place / ready before filling of water

- 1. Cek konstruksi tambak (Reservoir tambak culture, perlengkapan peralatan budidaya)
- 2. Clean liness (Rumput, benda benda yang tidak dibutuhkan untuk budidaya, sampah)
- 3. Cek kelistrikan (kincir, pompa, panel, kabel)
- 4. Screen (micron): Jumlah, kondisi, pemasangan
- 5. Bird Scare Line (BSD): Jumlah, rumbai, posisi.
- 6. Crab Device (CPD) : Posisi, kondisi, pemasangan. Possible crab entry points.

II. Ready for stocking (Siap tebar), Already filled up with water, treated, age.

- 1. Paddle wheel number and position
- 2. Water level
- 3. Treated water
- 4. Length of time for water preparation.

III. In Operation

- 1. Cek konstruksi tambak (Reservoir tambak culture, perlengkapan peralatan budidaya)
- 2. Clean liness (Rumput, benda benda yang tidak dibutuhkan untuk budidaya, sampah)
- 3. Cek kelistrikan (kincir, pompa, panel, kabel)
- 4. Screen (micron): Jumlah, kondisi, pemasangan
- 5. Bird Scare Line (BSD): Jumlah, rumbai, posisi.
- 6. Crab Device (CPD) : Posisi, kondisi, pemasangan. Possible crab entry points.
- 7. Paddle wheel number and position
- 8. Water level

Module Base	Pond Base	Extensive Plus			

Biosecurity breaches – Farm design

(Prevent disease spreading/outbreaks)

aking inlet gate

Wrong screen net condom

Shrimp Farm

Bio-secure module system

SPF Post Larvae

Harvest Pit

Sub soil pipe

Dried subinlet canal

Bird scare lines

Farm Biosecurity - Implementation

- 1. Use SPF post larvae (PL)
- 2. Use reservoir module system- water treatment system, operate as SOP
- 3. Balanced stocking density, energy input, pond construction & system.
- 4. Use crab fence all in place
- 5. Use bird scare lines all in place
- 6. Control workers' movement farm/farm; module/module, row/row
- 7. No handling (touching) unnecessary only person responsible can handle.
- 8. Minimize workers minimum worker team: stocking, harvest, sampling.
- 9. Use chemical (sun drying) to disinfect all equipment- screen net, cast net, etc.
- **10.** All equipment in operation eg. PWAs, water pumps, siphon equipment, etc.
- 11. Educate people on biosecurity
- 12. Environmental cleanliness Car dip, pond, water, housing, etc.
- 13. Control Human traffic- guest, workers, technicians, Management personal, etc.

Steps to be taken when WSSV (Viral) out-break is suspected.

- 1. When viral out-break is suspected you need to quarantine the suspected pond. At the same time you need to implement the following:
 - a. Stop all traffic people, trucks, cars, motorcycles passing across the pond
 - b. Stop sampling cast nets for shrimp size, environmental data (DO, Temp, etc).
 - c. Make the remaining ponds increase the carrying capacity increase DO by operating longer or more numbers to maximum capacity.
 - d. You could start with ponds near-by or ponds stocked from same hatchery.
 - e. For WSSV or viral pay more attention to young ponds.
 - f. Check biosecurity system for biosecurity breaches- correct if necessary.
 - g. Do not wait for PCR result.
- 2. Quarantine the suspected pond. (for DOC <45)
 - a. Assign a person to be stationed at pond site (24 hours).
 - b. Fence off the pond put signs (do not enter)
 - c. Make sure all inlet and discharge gates are secured no leakages.
 - d. Cull the pond with chlorine keep paddle wheel aerators running for mixing.
 - e. After shrimps are killed, stop the paddle wheel aerators. Do not take paddle wheels out of the pond.
 - f. Leave the pond with water for at least 7 days until the dead shrimps become red.
 - g. Pick up dead shrimps and burn or bury.
 - h. Water level will drop.
 - i. Leave for another few days 2 or 3 days.
 - j. Now pick up red shrimps and can discharge the water. Could use chlorine again before draining water out and use chlorinated water to clean PWAs within pond.
 - k. Leave the pond and paddle wheel aerators in the pond to dry for a week or so.
- 3. Make sure all people and equipment involved in the quarantine process to follow the biosecurity protocol.

What to do when problems observed (Prevention is better than cure)

- If mass mortality observed it is possibly due to viral infection. Then use quarantine protocol to prevent from spreading to other ponds or farms
- If some mortality seen in feed trays it is possibly due to bacterial or environmental or viral. If the pond is already mature (DOC > 90 or 16 grams) for harvest then harvest as soon as possible.
- If some mortality seen in feed trays and ponds not yet mature for harvest then the first thing one should do is increase carrying capacity of the ponds. The best is to increase aeration either by number or hours. This need to be done without delay. Once you know the reason then take action with appropriate solution.
- The actions should be based on reputable source eg. Boyd C. in GAA published series on environment and Lightner D., Univ of Arizona on diseases.
- One could increase pond carrying capacity is by exchanging more water. This action need to be careful as more water you fill in there is a risk of introducing viral particles at the same time.
- Siphoning sludge out of the pond is another way to increase pond carrying capacity.
- Take extra care in using chemicals, probiotics, etc. as these may have negative effects on pond carrying capacity. Probiotisc are as yet to be proven to be effective in culture ponds with complex ecological web.

Acknowledgements

The author would like to give sincere thank to Dr. Shahridan Faiez (CEO) and Mr. Christopher Lim (COO), Blue Archipelago for their interest and continued support.

The staff and members of Blue Archipelago, Malaysia for their diligence and hard work to make this presentation possible.

BlueArchipelago Quality | Safety | Ecology

THANK YOU