Expending Pacific White Shrimp (*Litopenaeus vannamei*)
Farming in Biofloc System

Nyan Taw

Kochi, India
17-20 January 2011
Introduction

Shrimp farming has become competitive and as such the technology utilized needs to be efficient in all aspects – productivity, quality, sustainability, bio-security and to be in line with market demand.

Basic Concept of Biofloc Technology

Yoram Avnimelech, 2000, 2005

Data on feed protein utilization

- ASP Tilapia ponds (Avnimelech) 45%
- ASP ShConventional fish, shrimp ponds 20-25%
- Srimp ponds (McIntosh) 45%
- Closed shrimp tanks (Velasco) 63%
- ASP shrimp ponds, 15N study
 Michele Burford et al. 18-29% of total N consumption
The ‘Biofloc (Floc)

FLOC COMMUNITIES AND SIZE

The biofloc
Defined as macroaggregates – diatoms, macroalgae, fecal pellets, exoskeleton, remains of dead organisms, bacteria, protest and invertebrates.
(Decamp, O., et al 2002)

As Natural Feed (filter feeders – L. vannamie & Tilapia) : It is possible that microbial protein has a higher availability than feed protein (Yoram, 2005)
Basic of BFT in Shrimp Farming

1. High stocking density - over 130 – 150 PL10/m2
2. High aeration – 28 to 32 HP/ha PWAs
3. Paddle wheel position in ponds
4. HDPE / Concrete lined ponds
5. Grain (pellet)
6. Molasses
7. Expected production 20–25 MT/ha/crop

Feed & grain application and biofloc

High aeration

Grain pellet

Bioflocs

Dark Vannamei

Red Vannamei
Pond Operation
High Aeration

Vannamei - Bacterial Floc PWA 15 HP (7 x 1HP and 4 x 2HP)

NOTE:
PWA 1 HP
PWA 2 HP
Rope

Siphoning
Paddle Wheels position

Feeding
Sampling Method
Measuring procedure

1 liter / 2 places/ 15 cm deep/ between 10-12 am

Let it settled for 15-20 minutes
Read density of flocs in cone (ml/l)
Feed, Grain Pellet and Biofloc
Control Biofloc

Brown biofloc

Green biofloc

Black biofloc

Black gill

Biofloc - general view at surface
Bio-Floc Technology (BFT): avances, manejo y aplicaciones de los sistemas superintensivos en la Acuicultura.

Los “microorganismos”...

Diatomeas, “nativas”... etc

Microalgas

bacteria

Fuentes y exigencias de C, N, etc...

Heterotróficas, nitrificantes...

Dinámica y interacción...

Bottom-up/top-down...

Cadena alimentaria/M.O. disuelta

Kind courtesy of Mr. Mauricio Emerenciano

Fotos: Yoram Avnicelech
Belize, Central America
Biofloc system culture

BELIZE SHRIMP FARM (McIntosh, 2000b&c)
L. vannamei Mexican strain
Pond size 1.6 hectare
Pond type Fully HDPE lined
Aeration input 48 HP of PWA
System Heterotrophic zero water exchange
Production 13,500 kg/ha/crop
Carrying capacity 550 kg shrimp/HP of PWAs
Farms Using Bio-floc Technology in Indonesia

DAERAH ADMINISTRASI INDONESIA

- Medan
- Bangka
- Dipasena
- Lampung
- CPB CP
- Bali
- Anyer
- East Java
- Bali
Shrimp Farms in Indonesia where BFT was applied
Production Performance
TD - R&D, Trail & Commercial

Floc System Production R&D, Trial and Company Commercial Ponds
Period 2003 - 2005

- **R&D:** Density 100-200 pcs/m², MBW 16.41 g, Biomass 9.905 kg, SR 81.7 %, FCR 1.29 (number of ponds = 46)
- **TRIAL:** Density 140 pcs/m², MBW 16.56 g, Biomass 10.082 kg, SR 87.0 %, FCR 1.42 (number of ponds = 13)
- **CCP:** Density 130 pcs/m² (standard), MBW 16.99 g, Biomass 9.557 kg, SR 85.5 %, FCR 1.21 (number of ponds = 131)
Global Medan

Partial Harvest/Biofloc Performance

Partial Harvest Performance with Bio Floc Technology (February - July 2008)

<table>
<thead>
<tr>
<th>Pond/size</th>
<th>System</th>
<th>Energy Input</th>
<th>Density</th>
<th>Partial</th>
<th>Harvest</th>
<th>Production</th>
<th>FCR</th>
<th>SR</th>
<th>Energy Efficiency -kg/HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5896 m²</td>
<td>Phyto</td>
<td>16 (PW)</td>
<td>100</td>
<td>118</td>
<td>434</td>
<td>47</td>
<td>21.28</td>
<td>11,461</td>
<td>19,439</td>
</tr>
<tr>
<td>2 5896 m²</td>
<td>Bio Floc</td>
<td>18 (PW)</td>
<td>145</td>
<td>108</td>
<td>2,092</td>
<td>59</td>
<td>16.95</td>
<td>13,508</td>
<td>22,910</td>
</tr>
<tr>
<td>3 5940 m²</td>
<td>Bio Floc</td>
<td>18 (PW)</td>
<td>146</td>
<td>109</td>
<td>2,108</td>
<td>56</td>
<td>17.86</td>
<td>14,386</td>
<td>24,219</td>
</tr>
<tr>
<td>4 4704 m²</td>
<td>Bio Floc</td>
<td>16 (PW)</td>
<td>257</td>
<td>85</td>
<td>1,962</td>
<td>93</td>
<td>10.75</td>
<td>17,963</td>
<td>38,229</td>
</tr>
<tr>
<td>5 2,500 m²</td>
<td>Bio Floc</td>
<td>9 (PW)</td>
<td>280</td>
<td>84</td>
<td>924</td>
<td>86</td>
<td>11.63</td>
<td>12,371</td>
<td>49,484</td>
</tr>
<tr>
<td>6 2500 m²</td>
<td>Bio Floc</td>
<td>7 (PW)</td>
<td>145</td>
<td>110</td>
<td>1,166</td>
<td>51</td>
<td>19.61</td>
<td>6,545</td>
<td>26,180</td>
</tr>
<tr>
<td>7 2500 m²</td>
<td>Bio Floc</td>
<td>9 (PW)</td>
<td>145</td>
<td>110</td>
<td>892</td>
<td>61</td>
<td>16.39</td>
<td>6,615</td>
<td>26,460</td>
</tr>
</tbody>
</table>

Performance - Shrimp Farms at Java & Bali, Indonesia using Biofloc Technology

Karang Asem, Bali, Indonesia

<table>
<thead>
<tr>
<th>Pond</th>
<th>A2</th>
<th>A3</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pond size</td>
<td>2,600m²</td>
<td>2,500m²</td>
<td>2,000m²</td>
<td>2,000m²</td>
<td>2,000m²</td>
<td>600m²</td>
<td>600m²</td>
<td>600m²</td>
</tr>
<tr>
<td>PL tebar</td>
<td>129/m²</td>
<td>134/m²</td>
<td>167/m²</td>
<td>167/m²</td>
<td>167/m²</td>
<td>152/m²</td>
<td>152/m²</td>
<td>152/m²</td>
</tr>
<tr>
<td>DoC</td>
<td>125</td>
<td>125</td>
<td>126</td>
<td>91*</td>
<td>125</td>
<td>125</td>
<td>135</td>
<td>147</td>
</tr>
<tr>
<td>SR %</td>
<td>91</td>
<td>92</td>
<td>89</td>
<td>85</td>
<td>85</td>
<td>92</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>FCR</td>
<td>1.3</td>
<td>1.42</td>
<td>1.36</td>
<td>1.45</td>
<td>1.44</td>
<td>1.61</td>
<td>1.52</td>
<td>1.58</td>
</tr>
<tr>
<td>Harvest/pond</td>
<td>6,232 kg</td>
<td>5,695 kg</td>
<td>5,645 kg</td>
<td>2,493 kg</td>
<td>5,248 kg</td>
<td>2,018 kg</td>
<td>1,725 kg</td>
<td>1,943 kg</td>
</tr>
<tr>
<td>Harvest/ha</td>
<td>23,969 kg</td>
<td>22,781 kg</td>
<td>28,225 kg</td>
<td>12,464 kg</td>
<td>26,235 kg</td>
<td>33,645 kg</td>
<td>28,750 kg</td>
<td>32,361 kg</td>
</tr>
</tbody>
</table>

Singaraja, Bali, Indonesia

<table>
<thead>
<tr>
<th>Pond</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pond size</td>
<td>2,500m²</td>
<td>2,500m²</td>
</tr>
<tr>
<td>PL tebar</td>
<td>152/m²</td>
<td>152/m²</td>
</tr>
<tr>
<td>DoC</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>SR %</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>ABW</td>
<td>24.39</td>
<td>24.39</td>
</tr>
<tr>
<td>FCR</td>
<td>1.63</td>
<td>1.59</td>
</tr>
<tr>
<td>Harvest/pond</td>
<td>6,304 kg</td>
<td>6,005 kg</td>
</tr>
<tr>
<td>Harvest/ha</td>
<td>25,212 kg</td>
<td>24,020 kg</td>
</tr>
</tbody>
</table>

Global group demo ponds in Bali on BFT

Based on report from Mr. Suritjo Setio, 8 September 2009

Java, Indonesia (Avnimelech 2009)

<table>
<thead>
<tr>
<th>Pond</th>
<th>D6</th>
<th>D5</th>
<th>D8</th>
<th>D7</th>
<th>D9</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pond size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL tebar</td>
<td>115/m²</td>
<td>115/m²</td>
<td>141/m²</td>
<td>172/m²</td>
<td>176/m²</td>
<td>139/m²</td>
</tr>
<tr>
<td>DoC</td>
<td>113</td>
<td>121</td>
<td>118</td>
<td>121</td>
<td>121</td>
<td>108</td>
</tr>
<tr>
<td>SR %</td>
<td>85</td>
<td>106</td>
<td>77</td>
<td>79</td>
<td>53</td>
<td>75</td>
</tr>
<tr>
<td>ABW</td>
<td>16.7</td>
<td>15.36</td>
<td>17.3</td>
<td>17.89</td>
<td>20.08</td>
<td>15.5</td>
</tr>
<tr>
<td>FCR</td>
<td>1.37</td>
<td>1.6</td>
<td>1.51</td>
<td>1.75</td>
<td>2</td>
<td>1.65</td>
</tr>
<tr>
<td>Harvest/pond</td>
<td>8,214 kg</td>
<td>7,374 kg</td>
<td>8,566 kg</td>
<td>6,739 kg</td>
<td>5,256 kg</td>
<td>7,533 kg</td>
</tr>
<tr>
<td>Harvest/ha</td>
<td>16,300 kg</td>
<td>18,700 kg</td>
<td>18,500 kg</td>
<td>14,600 kg</td>
<td>11,400 kg</td>
<td>16,400/kg</td>
</tr>
</tbody>
</table>

Based on report from Suri Tani Pemuka, Indonesia
Blue Archipelago, Malaysia

Biosecure modular system with BFT

250 & 1000 micron screen net

Seawater Intake – 2.4 km offshore

Biofloc
Blue Archipelago, Malaysia
Arca Biru Sdn Bhd Shrimp Farm

PRODUCTION PERFORMANCE OF ARCA BIRU FARM

<table>
<thead>
<tr>
<th>Production Parameter</th>
<th>System/size/type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biofloc 0.4 ha HDPE</td>
</tr>
<tr>
<td>No of Ponds</td>
<td>2</td>
</tr>
<tr>
<td>PWA Energy (Hp)</td>
<td>14</td>
</tr>
<tr>
<td>Stocking Density</td>
<td>130</td>
</tr>
<tr>
<td>DOC (days)</td>
<td>90</td>
</tr>
<tr>
<td>SR (%)</td>
<td>89.16</td>
</tr>
<tr>
<td>MBW (gr)</td>
<td>18.78</td>
</tr>
<tr>
<td>FCR (x)</td>
<td>1.39</td>
</tr>
<tr>
<td>ADG (gr/day)</td>
<td>0.21</td>
</tr>
<tr>
<td>Avg Harvest tonnage (kg)</td>
<td>9,006</td>
</tr>
<tr>
<td>Production (Kg/Ha)</td>
<td>22,514</td>
</tr>
<tr>
<td>Prod per power input (Kg/Hp)</td>
<td>643</td>
</tr>
</tbody>
</table>
Bio-floc in Raceways/Wet Lab Experiments, Trials & Growout

1. Nursery—nursed for 1 to 2 weeks then to GO
2. Super-intensive /intensive culture (to market size)
4. Broodstock testing– trials for quality of broodstock family lines (two to four months).
5. First phase of the three phase culture system.
Raceway Technology

Biofloc Trials - Nursery & GO

<table>
<thead>
<tr>
<th>Description</th>
<th>Stocking Density (pcs/m²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>550</td>
<td>130</td>
</tr>
<tr>
<td>Pond</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Initial MBW (g)</td>
<td>4.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Period (days)</td>
<td>57</td>
<td>90</td>
</tr>
<tr>
<td>Harvest Biomass (kg)</td>
<td>374</td>
<td>151</td>
</tr>
<tr>
<td>Final MBW (g)</td>
<td>13.8</td>
<td>18.4</td>
</tr>
<tr>
<td>FCR</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Survival rate (%)</td>
<td>66</td>
<td>88</td>
</tr>
<tr>
<td>ADG (g/day)</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Productivity (kg/m²)</td>
<td>5.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Productivity (kg/ha)</td>
<td>51,893</td>
<td>21,001</td>
</tr>
</tbody>
</table>

Image credit: Nyan Taw, et.al. Role of R&D ... World Aquaculture 2005 Bali
Raceway trials in BFT

Global Group Raceways at Anyer, Indonesia

The raceway system with biofloc is being applied for trials for *L. vannamei* broodstock family selection.
Wet Laboratory – Trial Tanks

Global Group facility at Anyer, Indonesia

1. Shrimp feed trials using transferred Biofloc
2. Small scale experiments at request
3. Freshwater tolerance experiments
4. Nursery stage experiments
Bio-Floc experimental device
(twenty-four 40l plastic tanks)

Indoor
(Six 12,000l indoor bio-floc lined tanks)

Outdoor
(six-teen 20,000l outdoor bio-floc lined tanks)

Bio-floc control

Kind courtesy of Mr. Mauricio Emerenciano
Potential of BFT – PERU
Lined and covered

Piura - Intensive with freshwater covered

Piura - Inside covered pond

Tumbes - Extensive with SW

Grain
Potential for BFT – GUATEMALA
Lined with high energy input
Potential for BFT – CHINA
Lined, covered & high energy input
Development of BFT (Productivity)
Advantages/ Disadvantages

Advantages

1. Bio-security very good (from water) – to date WSSV negative using the system.
2. Zero water exchange – less than 100% exchange for whole culture period.
3. Production (Carrying capacity): 5-10% better than normal system
4. Shrimp size bigger by about 2.0 g than normal system
5. FCR low – between 1.0 to 1.3 (without GP)
6. Production cost lower by around 15-20 %.

Disadvantages

1. High energy input – paddlewheels 28HP/ha.
2. Power failure critical – maximum one hour at any time (better zero hour failure)
3. Full HDPE lined ponds – minimum semi-HDPE lined
4. Technology similar but more advance – need to train technicians
SHRIMP PRODUCTION IMPROVEMENT

Sergio Nates Dec 2006
Thank You

Nyan Taw