

FUTURE OF BIOFLOC TECHNOLOGY IN ASIA

Nyan Taw, Ph.D. nyan.taw@bluearchipelago.com

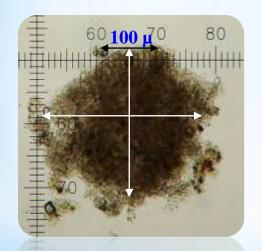
Phuket, Thailand 15-16 August 2012

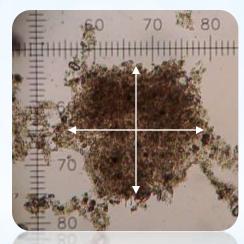
FUTURE OF BIOFLOC TECHNOLOGY IN ASIA

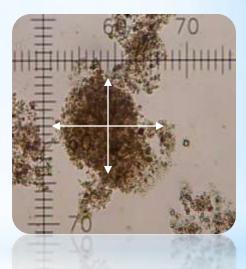
- 1. INTRODUCTION
- 2. BIOFLOC
- 3. COMMERCIAL SHRIMP CULTURE IN BIOFLOC
- 4. THE PITFALLS OF BFT
- 5. UTILIZATION OF BIOFLOC TECHNOLOGY FOR SHRIMP BROODSTOCK, NURSERY, RACEWAYS, ETC.
- 6. BIOFLOC AS AQUAFEED PROTEIN SOURCE
- 7. ECONOMICS
- 8. FUTURE OF BFT IN ASIA

1. INTRODUCTION

Biofloc, a very recent technology seem a very promising for stable and sustainable production as the system has self nitrification process within culture ponds with zero water exchange (Yoram, 2000, 2005a&b). The technology has been successfully applied commercially in Belize by Belize aquaculture (McIntosh, 2000a, b & c, 2001). It also has been applied with success in shrimp farming in Indonesia, Malaysia (Nyan Taw 2004, 2005, 2008, 2010 & 2011). The combination of two technologies, partial harvesting and biofloc, has been studied in northern Sumatra, Indonesia (Nyan Taw 2008 *et. al*).


Presently, a number of studies by major universities and private companies are using biofloc as a single cell protein source in aquafeeds.


With emerging viral problems and rising costs for energy, biofloc technology appears to be an answer for sustainable production not only in Asia but throughout the world



2. BIOFLOC

FLOC COMMUNITIES AND SIZE

The biofloc

Defined as macroaggregates – diatoms, macroalgae, fecal pellets, exoskeleton, remains of dead organisms, bacteria, protest and invertebrates. (Decamp, O., et al 2002)

<u>As Natural Feed (filter feeders – L. vannamie &</u> Tilapia) : It is possible that microbial protein has a higher availability than feed protein (Yoram, 2005)

Brown

Green

Blue Archipelago Quality | Safety | Ecology

Basic Concept of Biofloc Technology

Yoram Avnimelech, 2000, 2005

ASP Tilapia ponds (Avnimelech)

Srimp ponds (McIntosh)

Closed shrimp tanks (Velasco)

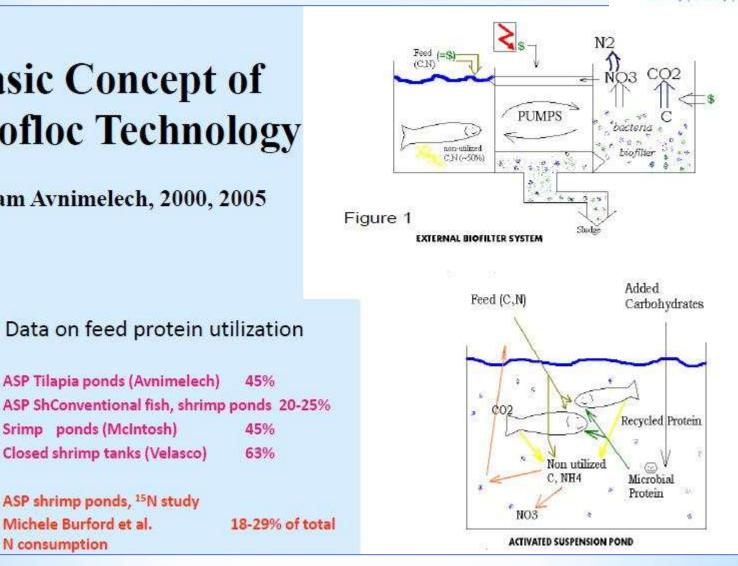
ASP shrimp ponds, ¹⁵N study

Michele Burford et al.

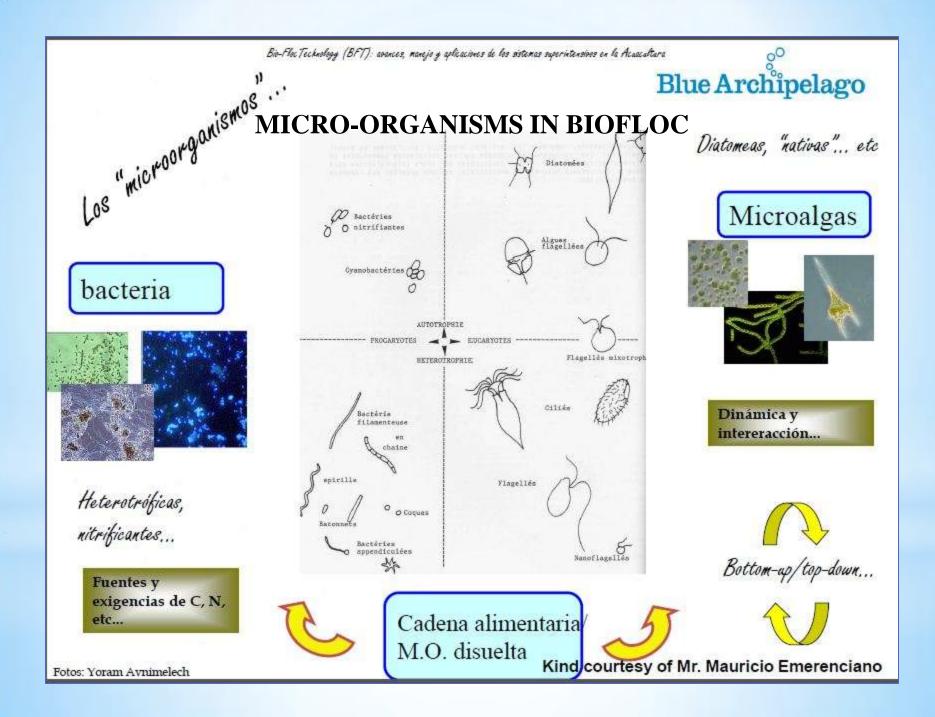
N consumption

.

٠

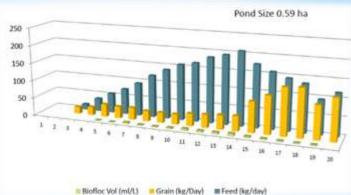

.

Data on feed protein utilization


45%

45%

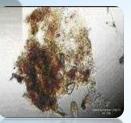
63%


Biofloc technology is a system that has a self-nutrification process within culture pond water with zero water exchange (Yoram, 2012)

3. COMMERCIAL SHRIMP CULTURE IN BIOFLOC

Basics

- 1. High stocking density over 130 150 PL10/m2
- 2. High aeration 28 to 32 HP/ha PWAs
- 3. Paddle wheel position in ponds (control biofloc & sludge by siphoning)
- 4. Biofloc control at <15 ml/L
- 5. HDPE / Concrete lined ponds
- 6. Grain (pellet)
- 7. Molasses
- 8. C&N ratio >15
- 9. Expected production 20–25 MT/ha/crop with 18-20 gm shrimp
- 10. Extra out put biofloc as protein source
- 11. Red color shrimps after cooking


Feed & grain application and biofloc

High aeration & PWAs position

Grain pellet

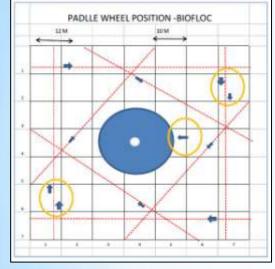
Bioflocs

Dark Vannamei

Red Vannamei

Pond Water Preparation

For already treated water in series of treatment reservoirs in


HDPE lined 0.5 ha production ponds

Day	Activity
1	Urea 8 kg & TSP 1 kg
	Grain pellet 30 kg & Dolomite 50 kg
2	Tea seed cake 15 ppm
4	Grain pellet 30 kg & Dolomite 50 kg
6	Grain pellet 30 kg & Dolomite 50 kg
8	Grain pellet 50 kg, Molasses 8 kg & Kaolin 50 kg
10	Grain pellet 50 kg
12	Kaolin 50 kg

Nyan Taw AA 2006, LV

Basic position of paddle wheel aerators' position for BFT

Sampling Method Measuring procedure

1 liter sample from sub-surface

Read density of bioflocs in cone (ml/l)

Nyan Taw AA 2006, LV

Blue Archipelago Quality | Safety | Ecology

Let it settled for a few minute

Belize, Central America Biofloc system culture

BELIZE SHRIMP FARM (McIntosh, 2000b&c)

L. vannamei Mexican strain Pond size 1.6 hectare Pond type Fully HDPE lined Aeration input 48 HP of PWA System Heterotrophic zero water exchange Production 13,500 kg/ha/crop Carrying capacity 550 kg shrimp/HP of PWAs

Belize Aqua Ltd - ponds

Performance First Commercial Trail in Indonesia

Description	-	Average Per Code							
Fry Code	(12) A416	(12) A417	(12) A418	(11)A420	(12) A539,A416	Avg			
Tot pond	5	6	7	5	3	26			
STD(pcs/m²)	131	131	130	131	131	131			
DOC (day)	148	146	150	146	146	147			
Biomass(kg)	11,337	10,587	10,650	10,886	11,256	10,883			
MBW (g)	16.78	17.66	17.61	17.89	16.38	17.4			
CV (%)	24.2	21.2	26.8	21.4	21.3	23.0			
CR (- GP)	1.01	1.09	1.08	1.03	0.98	1.04			
CR (+ GP)	1.69	1.83	1.82	1.70	1.64	1.73			
SR (%)	100.0	91.6	92.8	92.8	105.0	95.9			
ADG (g/day)	0.11	0.12	0.12	0.12	0.11	0.12			
Prod (g/m²/crop)	2,267	2,118	2,130	2,177	2,251	2,176			

Nyan Taw & Saenphon C. (WAS, Bali 2005) Nyan Taw (AA, L Vegas 2006)

Biofloc & Partial harvest Medan, Indonesia

Nyan Taw, et al, GAA Sep/Oct 2008

Brown biofloc

Green biofloc

Nyan Taw. et al WAS 2009 Mexico

Biofloc combined with Partial harvest Performance, Indonesia

Dendlaine	Queters	Energ	y Input	Density	Partial		Harve	est		Proc	duction	F	CR	SR	Energy Effici	ency -kg/HP	
Pond/size	System	(Pond)	(Ha)	(M2)	Partial	DoC	Biomas (Kg)	Size No/kg	MBW (gr)	Kg/Pd	Kg/Ha	GP	Feed	(%)	Std Capacity	Efficiency	
1	Phyto			100	1	118	434	47	21.28				1.60	75.72	560*	720	
5896 m2		16 (PW)	27 (PW)		Final	127	11,027	43	23.26	11,461	19,439	0	1.00	15.12	000	720	
2				145	1	108	2,092	59	16.95					84.07			
2	Bio Floc	18 (PW)	31 (PW)	145	2	121	1,016	55	18.18	13,508	22,910	10 0.59	0.59 1.20	1.20	04.07	680*	739
5896 m2					Final	131	10,400	52	19.23								
3				146	1	109	2,108	56	17.86					80.95			
5	Bio Floc	18 (PW)	30 (PW)	140	2	122	999	50	20.00	14,386	24,219	0.56	1.14	00.35	680*	807	
5940 m2					Final	130	11,279	47	21.28								
4	Bio Floc	16 (PW)	34 (PW)	257	1	85	1,962	93	10.75								
4704 m2	DIOTIOC	10 (1 10)	34 (1 11)	201	2	99	1,896	75	13.33								
					3	113	1,871	62	16.13	17,963	38,229	0.58	1.12	86.54	680*	1,124	
					4	127	2,587	56	17.86	17,500	30,223	0.50	1.12	00.04	000	1,124	
					5	134	2,475	53	18.87								
					Final	155	7,192	47	21.28								
					1	84	924	86	11.63								
					2	99	1,455	74	13.51				8 1.11		5 680*	1,031	
5	Bio Floc	9 (PW)	36 (PW)	280	3	113	1,324	61	16.39	12,371	49,484	0.48		102.35			
2,500 m2		3 (BL)	12 (BL)		4	127	1,448	57	17.54	12,071	10,101			102.00	000		
					5	134	1,043	54	18.52								
					Final	155	6,177	50	20.00								
		7 (PW)	28 (PW)	145	1	110	1,166	51	19.61					86.35			
6	Bio Floc	3 (BL)	12 (BL)		2	124	367	49	20.41	6,545	26,180	0.50	1.10		680*	655	
2500 m2		, ,	. ,		Final	127	5,012	47	21.28								
		9 (PW)	36 (PW)	145	1	110	892	61	16.39								
7	Bio Floc	3 (BL)	12 (BL)	170	2	124	323	57	17.54	6,615	5 26,460	0.50).50 1.10	100.8	680*	551	
2500 m2			- ()		Final	130	5,400	54	18.52								
										82,849	29,560	0.53	1.13	88.1			

Partial Harvest Performance with Bio Floc Technology (February - July 2008)

Nyan Taw, et al, GAA Sep/Oct2008 Nyan Taw et al, WAS 2009 Mexico

Biosecure Modules, Blue Archipelago, Malaysia

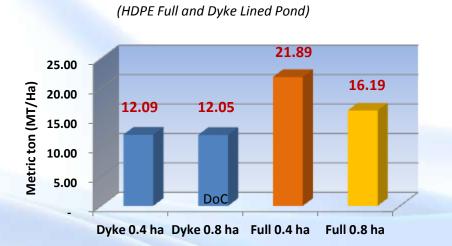
HDPE lined ponds with center drain, secured outlet gates & Main supply canal

Sub inlet

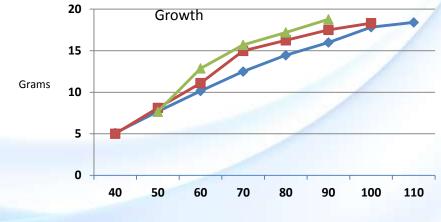
250 & 1000 micron screen net

Nyan Taw, Biosesurity....GAA Nov/Dec 2010 Nyan Taw, *et.al.* MalaysianGAA March/April 2011

Biosecurity – crab fence & bird scare



Pond out let gate



HDPE Lined secondary supply canal

Performance Blue Archipelago, Malaysia

Arca Biru Performance

---- Density 80 (Dike) ---- Density 110 (Full) ---- Density 130 Biofloc

PRODUCTION PERFORMANCE OF ARCA BIRU FARM

Production Parameter	Syste			
Floudetion Farameter	Biofloc 0.4 ha HDPE Semi-Biofloc 0.8 ha HDPE		Conven 0.8 ha HDPE Dyke	
No of Ponds	2	19	119	
PWA Energy (Hp)	14	24	20	
Stocking Density	130	110	83	
DOC (days)	90	101	111	
SR (%)	89.16	81.35	83.19	
MBW (gr)	18.78	18.31	17.80	
FCR (x)	1.39	1.58	1.77	
ADG (gr/day)	0.21	0.18	0.16	
Avg Harvest tonnage (kg)	9,006	12,950	9,616	
Production (Kg/Ha)	22,514	16,188	12,019	
Prod per power input (Kg/Hp)	643	540	481	

Nyan Taw, et.al. GAA March/April 2011

From:

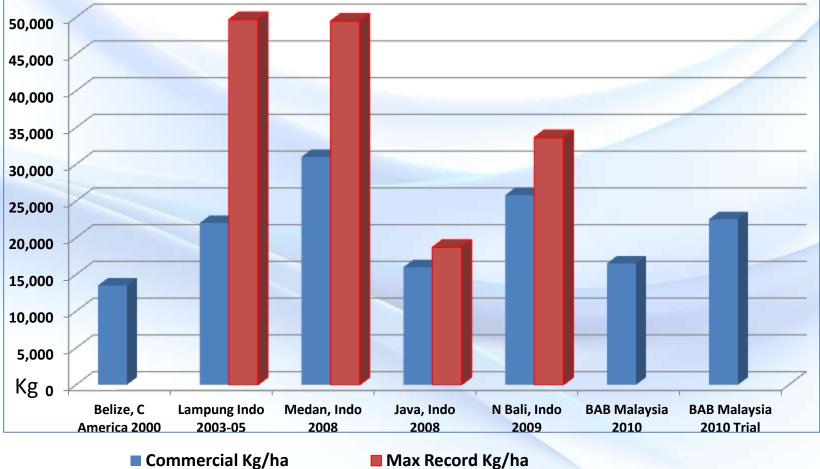

P. monodon Cultured in biofloc

Can P. monodon be cultured in biofloc systems?

- Typical production in ponds with a stable floc and stocked with about 45 PL/m² was 10 to 12 t per hectare
- Target harvest weight 35 g
- David M. Smith, et al, 2008

Development of protocols for the culture of black tiger shrimp, *Penaeus monodon*, in "zero" water exchange production ponds

 FCRs when shrimp were 30 g was 1.3:1 (excluding molasses added to pond)


iSHARP Integrated Shrimp Farming Project Malaysia (Potential for Biofloc Technology)

				1
	Trial Performance	Parameters	Planned	Actual
Project site -1,000 hectare	Two Modules	Stocked ponds	48	48
	Culture cycle - 1 st Trial	PL required (mill)	14.6	14.59
the second is a second	23 Oct 2011 – 3 Mar 2012	Harvested ponds	48	48
	23 OCt 2011 – 3 Wai 2012	Feed Used	277.0	356.3
		DoC	110	100
		Survival (%)	75	97.3
		Size (gms)	18.0	17.3
	A A A A A A A A A A A A A A A A A A A	FCR	1.50	1.41
100 / 10 / 10 / 10 / 10 / 10 / 10 / 10		Production (MT)	198.0	251.5
	Farm layout -phase one			4
HDPE	lined modules with trea	tment pond	s	

Biofloc in shrimp culture **Production Performance**

Max Record Kg/ha

4. THE PITFALLS

- Commercial products to beware of
- 1. Instant Biofloc
- 2. Probiotics as starter for Biofloc

Excess aeration PWA and air diffusers number & position not control or in wrong position

PWAs - direction one way only Un-coordinated paddle wheel position Number of PWAs not correlated to stocking density or carrying capacity Can develop biofloc but cannot control

5. UTILIZATION OF BIOFLOC TECHNOLOGY FOR SHRIMP BROODSTOCK, NURSERY, **RACEWAYS, ETC.**

SUPER-INTENSIVE (RAS)

Ocean Institute, Hawaii, Moss (2006)

Stocking Density FCR Size Production

300 /m3 1.49 24.7 g 7.5 kg/m3

Blue Archipelago

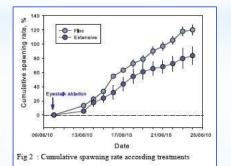
Quality | Safety | Ecology

Texas A & M Univ. Samocha (2009)

Stocking Density	450 /m3
FCR	1.52
Size	22.36 g
Production	9.37 kg/m3

BFT IN BROODSTOCK, NURSERY, RACEWAYS & INDOOR COMMERCIAL PRODUCTION

Indoor tanks, raceways & broodstock culture, Indonesia



Indoor biofloc farm in Italy (Shrimp news International April 2012)

Broodstock farming trials New Caledonia (Chim et al 2011)

Description	Stocking Density (pcs/m ²)			
	550	130		
Pond	2	2		
Initial MBW (g)	4.9	1.7		
Period (days)	57	90		
Harvest Biomass (kg)	374	151		
Final MBW (g)	13.8	18.4		
FCR	1.2	1.0		
Survival rate (%)	66	88		
ADG (g/day)	0.16	0.19		
Productivity (kg/m ²)	5.2	2.1		
Productivity (kg/ha)	51,893	21,001		

Biofloc Studies in Mexico and Brazil.

Bio-Floc experimental device (twenty-four 401 plastic tanks) Blue Archipelago

Outdoor (six-teen 20,000l outdoor bio-floc lined tanks)

Bio-floc control

Indoor (Six 12,000l indoor bio-floc lined tanks)

UMDI, Sisal UNAM-México

Kind courtesy of Dr. Mauricio Emerenciano

6. BIOFLOC AS AQUAFEED PROTEIN SOURCE

Crude Protein – range 35-50%

(Slightly deficient in arginine, lysine & methionine)

Crude Lipid – range 0.6-12%

High Ash – range 21-32 %

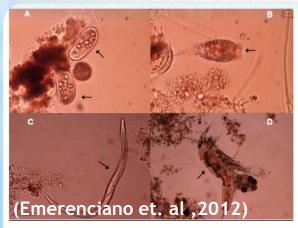
(Conquest & Tacon, 2006)

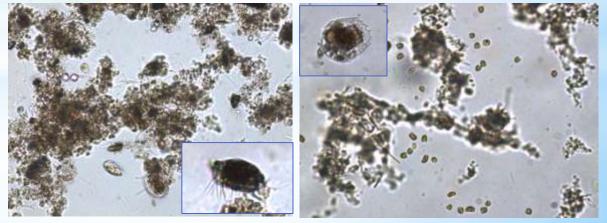
Tabela 2 – Composição Bromatológica com base na matéria seca de agregados microbianos formados em diferentes experimentos

Fonte	PB (%)	Carb (%)	EE (%)	FB (%)	Cinzas (%)
Mointosh et al (2000)	43.00		12,5		26,5
Tacon et al (2002)	31,20		2,6		28,2
Soares (2004)	12.0-42.0		2,0-8.0		22,0-46,0
Emerenciano et al (2006)	30,40	29,10*	0,47	0,83	39,20
Wasielesky et al (2006)	31,07	23,59	0,49	1.0	44,85

PB - proteína bruta; Carb. - carboidratos; EE - extrato etéreo ou lipídios; FB - fibra bruta

(Emerenciano et. al, 2012)




Figure 2 – Grazers often observed in BFT system such as ciliates protozoa (A), flagellates protozoa (B); nematodes (C) and copepods (D) (10x magnification) (Source: Emerenciano et al., 2012)

Composition of microbial flocs on dry matter basis, mean values with standard errors, as determined by laboratory analysis (n = 2).

Parameter	Microbial flocs
	[g/100 g]
Crude protein	49.0 ± 1.5
Carbohydrate ^a	36.4 ± 0.9
Total ash	13.4 ± 0.6
Crude fat	1.13 ± 0.09
Crude fiber	12.6 ± 0.1
Calcium	1.28 ± 0.07
Phosphorus	1.29 ± 0.08
Sodium	1.27 ± 0.03
Potassium	0.75 ± 0.13
Magnesium	0.41 ± 0.05
	[mg/kg]
Zinc	181 ± 1
Copper	92.5 ± 3.0
Manganese	35.0 ± 0.5

^a Calculated value (Merrill and Watt, 1973): carbohydrate = 100 - (ash + crude protein + moisture + total fat).

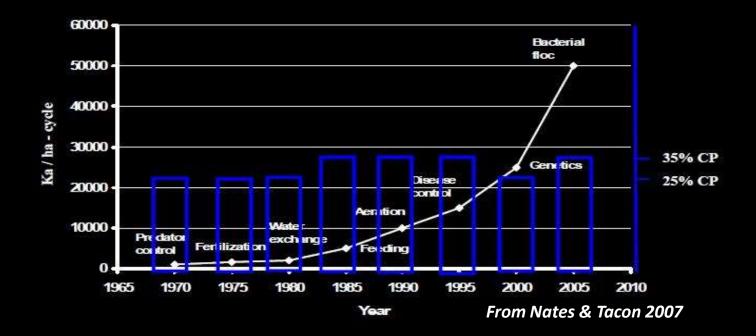
(Kuhn, et. al, 2009)

iSHARP ponds biofloc, Malaysia

ECOMOMICS OF BIOFLOC TECHNOLOGY

	BIOFLOC	AUTOTROPHIC	REMARKS
Production (MT)	22 MT/ Ha	21 MT/ha	Increase in production = more profit
Growth (gms/day)	0.16 to 2.1	0.13 to 0.16	Larger shrimp size = better price
FCR	1.1 to 1.3	1.5 to 1.7	Lower FCR = lesser feed cost. FCR 0.1 = 3-4% of feed cost.
Biofloc as Protein source	Crude Protein - 35-50%	none	Shrimp/fish consume biofloc. Biofloc can be harvested to replace protein in aqua feed.
DoC (Days of Culture)	90 -100 days	110-120 days	Less DoC = increase production cycles (eg from 2 to 2.5 cycles/ year. More revenue.
Energy Efficiency (HP)	650 – 1,100 Kg/HP	400 - 600 Kg/HP	More efficiency = less energy cost
Shrimp color (red)	Salmon scale > 28	Salmon scale < 24	Strong red = Better price
Stability	CV < 25 %	CV > 25 %	Lower CV = More productivity
Sustainability	Flush out < 1.5%	Flush out > 10 %	More sustainability = Higher production
Water exchange	Zero water exchange	Minimum or flow through	Energy saving in water pumping
Gross profit	> 35 %	< 30 %	The more the profit the better

BIOFLOC TECHNOLOGY IN INDONESIA


BIOFLOC TECHNOLOGY – WORLD WIDE

FUTURE OF BFT IN ASIA ? WHITE SHRIMP (*L. vannamei*) – CHICKEN OF SEA ?

SHRIMP PRODUCTION IMPROVEMENT

ACKNOWLEDGEMENTS

The author would like to give sincere thanks the following:

Mr. Abu Bakar Ibrahim (CEO) and Mr. Christopher Lim (COO), Blue Archipelago for their interest and support. The staff and members of Blue Archipelago, Malaysia for their support to make this presentation possible.

THANK YOU

